

Primum non nocere

Challenges to Safety in EMS/ Emergency Care

- · Time urgency
- Interruptions
- · Uncontrolled environment
- Stress
- · Multiple and overlapping patient encounters
- Unscheduled care
- Incomplete patient historical data
- · Unpredictable patient presenting conditions
- · Variable initial training and continuing education

Outline

The Problem

– EMS Risks

Provider Safety
Patient Safety
Creating a Culture of Safety

EMS Patient Safety Themes from Published Literature

- · Clinical judgment
- · Adverse events and error reporting
- Communications
- Ground vehicle safety
- · Aircraft safety
- · Interfacility transport
- Field intubation

Bigham BL, et al. Prehosp Emerg Care 2012;16:20-35.

Insurance Industry

Top EMS risks

Injuries to patients:

- 1. during carrying/moving
- 2. in ambulance crashes
- 3. from medication error
- 4. from procedure errors (misplaced endotracheal tube)

EMS Risks EMS Provider Work-Related Fatalities

- 12.7/100,000 EMS workers
- Similar to PD and FD
- · 250% higher risk than average workers
- Transportation risk 500% higher than average
 - exceeds PD and FD

EMS Risks Air Medical Crew Risks

- 2008 9 crashes/ 28 fatalities
- Deaths over 10 years

HEMS crew
AK Fishermen
Police Officer
113/100,000 employees
21/100,000 employees

Safety Culture?

Outline

The Problem

Provider Safety

- Human Factors
- Vehicle Operations
- Vehicle Design
- Outside of the Vehicle

Patient Safety

Creating a Culture of Safety

Human Factors

- Fatigue
 - 21 hours awake = 0.08 BAC
 - Shifts/ Duty Hour Limits
- Distractions
 - Radio
 - Cell phone
 - Pager
 - Texting

Human Factors "Sterile Cockpit" Concept

- Short-final vs. L&S response
- No unnecessary/ non-mission conversation
- · Zero tolerance for driver:
 - cell phone use
 - viewing pager
 - texting
- · Co-pilot assists with:
 - radio
 - navigation
 - watching traffic

Vehicle Operations Seatbelt/ Restraint Use

- Pennsylvania Statewide Protocol (since 2004)
 - Driver and cab passenger
 - All non-EMS passengers
 - All patients
 - Children in child seats
 - EMS personnel not performing direct patient care
- Prevention
 - $\boldsymbol{-}$ Use of existing restraints is possible most of the time $\boldsymbol{!}\boldsymbol{!}$
 - We must work to minimize time out of restraints !!
 - Eliminate (almost) CPR during transportation

Warning lights/ sirens

• Culture of safe practices far outweigh additional wattage/ LEDs/ decibels

Reasons for L&S Use

- Time (fire analogy)
- Required by insurance company
- Tradition
- Fun
- Medical Emergency

Time Savings Studies

- Greenville, NC (Ann Emerg Med, 1995)
 - Hunt RL, Brown LH, et al.
 - 43.5 seconds saved
- Minneapolis, MN (Ann Emerg Med, 1999)
 - Ho J, Casey B, et al.
 - 3.02 min saved
- Syracuse, NY (Ann Emerg Med, 2000)
 - Brown LH, Hunt RL, et al.
 - 1 min 46 seconds saved

Vehicle Operations L&S Use During Response

- · No evidence for L&S response to:
 - Inter-facility transfer
 - CO detector activation
 - Fire Stand-by
 - LifeLine activation
 - MVC with unknown injuries
 - Nursing home or physician's office for noncardiac arrest
- Benchmark for L&S 911 response (? 25%)

Kupas DF, Dula DJ, Pino BJ. Prehosp Disaster Med, 1994

- · Medical criteria for L&S transport
- 8% L&S transport

Medical Indications for L&S Transport

- Time dependent (minutes) medical emergency
 - Airway compromise
- Impending cardiac arrest
 Inappropriate L&S transport examples
 - STEMI
 - Stroke
 - ? Cardiac Arrest with CPR in progress
- Benchmark L&S transport = sentinel event

Culture of Safety

Reducing lights and siren response and eliminating almost all lights and siren transport decreases crash risk for EMS providers and patients

Vehicle Operations Driver Feedback Systems

- Levick N, Little Rock EMS
- · Reduce accidents
- · Increase vehicle life
- · Richmond, VA
 - Decreased accidents
 - 28% decrease accident repair cost
 - \$1364 savings/ vehicle

Vehicle Design European EMS Vehicles

- Mercedes Sprinter
- Crash testing for EMS vehicles
- High-visibility
- Retroflective chevron
- Forward-facing crew seat
- Secured equipment
- Hydraulic patient lifts

Outside of the Vehicle

- Environmental CO detectors
- Wellness Program
 - Biggest Loser
- Back Injury Prevention
 - Weight of bags/ equipment
 - Power-lift stretchers
 - Stair devices High-visibility wear
 - ANSI II/III highway requirements
 - Boots on the ground = Hi-Viz policy

Outline

The Problem

Provider Safety

Patient Safety

- Transition/ Hand-over
- Checklists
- Medications
- Equipment

Creating a Culture of Safety

Transfer of Care **EMS to Emergency Department**

- "Time Out" for EMS at time of hand-over
- Verbal report
- · Opportunity to ask questions
- · Written report

Opportunity for Safety Checklists

- · Ensures care based upon best guidelines
- Helpful in high stress/ complex situations
- Proven to reduce medical adverse events

Opportunity for Safety Checklists - Boeing 299 (B-17)

Not "too much plane for one man to fly", but too complex a plane for one man's memory

Four initial checklists:

- Take off
- Flight
- Before landing
- After landing

WHO Patient Safety Checklists

- Surgical Safety Checklist (2008)
- · Safe Childbirth Checklist (pilot)
- Trauma Care Checklist (in development)
- Pandemic H1N1 Clinical Checklist (2009)

Medication Safety Issues in EMS

- Safety issues with EMS medication storage and use:
 - Space limits organization of medications
 - Less providers to double check dosing
 - Temperature changes affect medication potency
 - Technology (infusion pumps) less practical

Kupas DF, Shayhorn, et al. Prehosp Emerg Care 2012 Jan;16(1):67-75

Opportunity for Safety Technology

- Technology can reduce errors due to human factors, for example:
 - Capnography eliminates misplaced endotracheal tubes
 - Environmental carbon monoxide monitoring ensures scene safety and identifies CO poisoning
- Caution technology can both reduce and create patient safety issues (for example electronic EMS patient record)

Outline

The Problem Provider Safety Patient Safety

Creating a Culture of Safety

- Adverse Event Reporting
- Just Culture
- Safety Committee

Categories of Patient Outcome from Error

- A. Potential to cause harm
- B. Error occurred but did not reach the patient
- C. Error reached patient but did not result in harm
- D. Error reached patient and required intervention to prevent harm
- E. Temporary harm requiring intervention
- F. Temporary harm requiring increased length of stay
- G. Permanent harm
- H. Life-saving intervention required
- I. Death

Adverse Event (AE) Reporting What are the risks to our patients?

- · Early AE Reporting Systems
 - Vaccine safety
 - Medical device safety
 - Transfusion reaction
- · Other Sources of Information
 - Insurance databases
 - Government databases
- · EMS Safety Event Reporting

Pennsylvania EMS Safety Event Reporting Results

- · Summary of Pennsylvania EMS AEs
- 415 events reported anonymously
- Patient safety reports classified as:

32% Action/behavior 7% Level of care
16% Vehicle/transportation 6% Medical Procedures
13% Ambulance availability 5% Medication error
9% Medical equipment 3% Scene safety
8% Communication 1% Protocol issue

Gallagher JM, Kupas DF Prehosp Emerg Care 2012 Jan;16(1):36-42

Formerly PA EMS Safety Event Reporting System

http://event.clirems.org

EMS Agency Safety

- Start a Safety Committee
 - In PA, 5% reduction in Worker's Comp insurance
- · Safety Rounds in vehicles and stations
- Event Reporting (non-punitive)
- · Review personnel scheduling
- Agency Policies
 - Seat Belt
 - L&S Use
 - Distracted Driver/Sterile Cockpit
 - Drug storage/ pharmaceutical practices

Safety Culture Summary Right NOW (and inexpensive)

- · Culture of Safety
 - EMS Agency Safety Committee and Safety Rounds
 - Agency policies (buy-in/enforcement)
 - Just culture
- Wear seatbelts/restraints at almost all times!
- Minimize L&S response
- Eliminate almost all L&S transport
- Being visible should outweigh tradition/uniqueness
- · Consider safer vehicles with forward facing seats
- Sterile cockpit/ limited telecommunciation by driver

Conclusion

- Apply general healthcare patient safety principles to FMS
- Actively collect and analyze safety risks in our EMS systems
- Use checklists and incorporate best practice guidelines when possible
- Use structured process for transfer of care
- · Develop a true culture of safety across EMS

Patient Safety Resources

- Emergency Medicine Patient Safety Foundation
 - http://www.empsf.org
- Institute for Safe Medication Practices
 - http://www.ismp.org
- World Health Organization
 - http://www.who.int/patientsafety
- Institute for Health Improvement
 - http://www.int.org

